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IRT Model Selection Methods for Polytomous Items

Abstract

A number of IRT models are available, each appropriate for a particular type of

items or contexts. When such models are nested, the use of a likelihood ratio test

may be appropriate for the purpose of model selection. When non-nested models or

Bayesian estimation procedures are used, however, other item selection methods may

be required. In this study, we compared five model selection indices, the likelihood

ratio test, two information-based criteria, and two Bayesian methods, for use in model

selection with nested and non-nested polytomous IRT models. In a simulation study,

we compare the utility of these methods when models are nested and when models are

non-nested. Results indicate that model selection was dependent to some extent on

the particular conditions simulated.

Introduction

Item response theory (IRT) consists of a family of mathematical models designed

to describe the relationship between examinee ability and performance on test items.

Selection of an appropriate IRT model is based in part on model-data fit and is critical if

the benefits of IRT are to be obtained. When IRT models are nested, it may be possible

to select an appropriate model using a likelihood ratio (LR). The LR test statistic, G2,

is a chi-square based statistic and is calculated as −2× log of the likelihood for a given

model. A difference between the G2s for two models is itself distributed as a chi-square

and so can be subjected to significance tests to determine which model is the better fit

(Anderson, 1973; Baker, 1992; Bock & Aitkin, 1981).

When IRT models are not nested, an alternative approach is to investigate model

selection. In such cases, it may be possible to use information-based statistics such as
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Akaike’s Information Criterion (AIC: Akaike, 1974) or Schwarz’s Bayesian Information

Criterion (BIC: Schwarz, 1978). Although significance tests are not possible with these

statistics, they do provide estimates of the relative differences between solutions. These

statistics are appropriate when maximum likelihood estimates of model parameters are

obtained. As Lin & Dayton (1997), Lord (1975), and Sahu (2002) note, however, as-

ymptotic estimates of item parameters may not always be available, in which case

neither AIC nor BIC are appropriate. For such situations, Bayesian parameter esti-

mation can sometimes be an effective alternative. Such estimates are obtained when

using Markov chain Monte Carlo (MCMC) methods. Two model selection methods

have been suggested when MCMC methods are used for estimation of IRT parameters:

One is the pseudo-Bayes Factor (PsBF: Geisser & Eddy, 1979; Gelfand & Dey, 1994;

Bolt, Cohen & Wollack, 2001), and the other is the Deviance Information Criterion

(DIC: Spiegelhalter, D. J., Best, N. G., & Carlin, B. P., 1998). In this paper, we

present some comparative evidence for efficacy of these different methods for selection

of an appropriate IRT model.

As suggested above, comparisons among the different methods for model selection

are complicated by the type of estimation, whether maximum likelihood or Bayesian,

and by the relation among the models being considered, whether nested or not nested.

If such comparisons could be made, they would provide useful information for making

model selection decisions in practical testing situations. The LR test is appropriate

only for comparisons among nested models. The AIC, BIC, PsBF, and DIC, however,

may be used for comparisons of nested or non-nested models. This is important as non-

nested models are frequently considered for modeling item response data. It would be

of interest, therefore, to examine how the five model selection methods compare to one

another. In this paper, we compare results for these five methods for use with data

from polytomous item test.
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To provide a basis for making comparisons among the five statistics, we will ex-

amine model selection using the following four polytomous IRT models: the rating

scale model (RSM; Andrich, 1978), the partial credit model (PCM; Masters, 1982),

the generalized partial credit model (GPCM; Muraki, 1992), and the graded response

model (GRM; Samejima, 1969). The first three models, the RSM, PCM, and GPCM,

are hierarchically related to each other. The probability for an examinee j to get a

category score x at an item i is modeled by the GPCM as

Pjix =
exp

∑x
k=0 ai[θj − bi + τki]∑m

y=0 exp
∑y

k=0 ai[θj − bi + τki]
, (1)

where j = 1, . . . , N , i = 1, . . . , T , and x = 0, . . . ,m. In this model, ai repre-

sents the discrimination for item i, bi represents the location or difficulty of item i,

and τk represents the step parameter for category k of item i. We set τ0i = 0 and

exp
∑0

k=0 ai[θj − bi + τk] = 1 in Equation (1) for identification.

If the ai = 1 across items, Equation (1) transforms to the PCM. If τ values are the

same for each category, respectively, across items, Equation (1) further transforms to

the RSM. So the first three models meet one of the conditions for the LR test, that

is, they are nested. These models are not nested, however, with respect to the GRM.

For model comparisons which include the GRM, therefore, the LR test would not be

appropriate.

The GRM can be modeled using boundary characteristic curves to describe the

probability of a response higher than category x. It is convenient to convert the x =

0, . . . ,m category scores into x = 1, . . . ,m + 1 categories. P ∗

jix is a boundary curve

describing the probability for examinee j to have a category score larger than x on item

i:

P ∗

jix =
exp[ai(θj − bxi)]

1 + exp[ai(θj − bxi)]
. (2)

Then, in GRM, the probability for an examinee j to achieve a category score x at item
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i is

Pjix = P ∗

ji(x−1) − P ∗

jix (3)

where x = 1, . . . ,m + 1, P ∗

ji0 = 1, and P ∗

ji(m+1) = 0.

Maximum likelihood algorithms are available for estimation of model parameters

for all four models, meeting a condition for use of the LR, AIC and BIC statistics. If

the GRM is to be compared to the RSM, PCM, and GPCM, however, the LR is no

longer appropriate and other model selection indices need to be considered.

Parameters for these models can also be estimated using Bayesian algorithms and

so meet a requirement for use of Bayesian model selection indices such as the PsBF and

DIC. As suggested above, these comparisons are problematic, as maximum likelihood

estimates of model parameters are required for the LR, AIC, and BIC statistics and

Bayesian posterior estimates are needed for the PsBF or DIC statistics. One way to

make comparisons among the five statistics would be to do so on common sets of data.

Although different algorithms would be used for estimation of model parameters, at

least they would be made on the same sets of data. Such comparisons would provide

relative information about model selection among the different statistics. We illustrate

the problem below on a set of State NAEP mathematics test data from 2000. In the

sequel, we describe a series of simulations designed to provide relative information

among the different statistics.

Model Selection Indices. The LR test tends to select a model with more para-

meters compared to models with fewer parameters. The availability of a significance

test with the LR test, however, can be useful. The other four model selection statistics

do not have associated significance tests. In addition, these other indices incorporate

a kind of penalty on model complexity.

The AIC has two components. The first component, −2×log (maximum likelihood),
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we refer to as G2, the deviance. The smaller the deviance for a model, the better fitting

the model. The other component, 2×p, where p is the number of estimated parameters

is intended as a penalty function for over-parameterization.

AIC(Model) = G2 + 2p, (4)

The model with the smallest is the one to be selected. A criticism of AIC is that it is not

asymptotically consistent since sample size is not directly involved in its calculation.

Although the AIC is useful, other indices such as the Bayes Factor (BF) also have been

proposed.

A common Bayesian approach to comparing two models, Model A and Model B, is

to compute the ratio of the posterior odds of Model A to Model B divided by the prior

odds of Model A to Model B. BF is the ratio of marginal likelihoods for two models:

BF =
posterior odds

prior odds
=

P (data|ModelA)

P (data|ModelB)
. (5)

A BF greater than 1.0 supports selection of Model A and a value less than 1.0 supports

selection of Model B. One limitation in using BF is that it is only appropriate if it can

be assumed that one of the models being compared is the true model (Smith, 1991).

A less stringent assumption is that the two models are more appropriately regarded

as proxies for a true model. In this case, cross-validation log-likelihoods can often be

used to compute a PsBF to help determine which model to select (Spiegelhalter et al.,

1996).

Schwarz (1978) suggested BIC as an approximation to BF. According to Western

(1999), the difference of two BICs, BICModelA−BICModelB, is a fairly accurate approxi-

mation of −2×log (BF ), where one of two models is a saturated model that fits the data

perfectly. BIC achieves asymptotic consistency by penalizing over-parameterization

with the use of a logarithmic function of the sample size. The BIC criterion is defined
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as

BIC(Model) = G2 + p (logN), (6)

where N is the sample size. BIC tends to select models which are simpler than those

selected by AIC. In other words, BIC gives a higher penalty to the number of para-

meters and thus tends to choose models with fewer parameters than the AIC. As Lin

& Dayton (1997) have noted, results from these two statistics do not necessarily agree

with each other.

Spiegelhalter, et al. (2002) proposed another index, the deviance information cri-

terion (DIC), to deal with Bayesian posterior estimates of model parameters. DIC is

composed of a Bayesian measure of fit or ‘adequacy’ called the posterior mean deviance

D̄ and a penalty for model complexity, pD, the number of free parameters in the model.

DIC(Model) = D(θ) + pD = D ¯(θ) + 2 × pD, (7)

where D(θ), the posterior mean of the deviance, is a Bayesian measure of fit, D ¯(θ) is

the deviance of the posterior model (i.e., the deviance at the posterior estimates of the

parameters of interest), and pD = D(θ) − D ¯(θ). The model with the smallest DIC is

selected as the model that would best predict a replicate dataset of the same structure

as that currently observed.

In Study 1, we present an example to illustrate the use of the five indices discussed

above. Study 2 presents a simulation study designed to explore the relative behavior

of these indices on specific sets of data for the four polytomous IRT models, the RSM,

PCM, GPCM, and GRM.

Study 1: Comparison of Model Selection Indices

On a Set of NAEP Mathematics Data

Methods
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Data. Data for this illustration will be taken from responses of Grade 8 students

taking the 2000 State NAEP mathematics test. The 2000 State NAEP mathematics

items were divided into 13 unique blocks of items (Allen, Jenkins, Kulick, & Zelenak,

1997). Test booklets were developed for the 2000 State NAEP containing different

combinations of three of the 13 blocks. The design of the NAEP data collection en-

sured that each block was administered to a representative sample of students within

each jurisdiction (Allen et al., 1997). Students were allowed a total of 45 minutes for

completion of all three blocks.

Data from one of 13 Blocks were used for this example. The block selected had a

total of 9 items, 5 of which were scored polytomously as 0 (wrong), 1 (partially correct),

or 2 (correct). The GPCM was used to model the item response functions for this type

of item (Allen et al., 1997). Below, we compare the fit of the four models, the GPCM,

the RSM, the PCM, and the GRM, on these data.

Parameter Estimation. Maximum likelihood estimates of item parameters were ob-

tained using the computer program PARSCALE (Muraki & Bock, 1998). PARSCALE

provides an estimate of −2×log (maximum likelihood) for each set of items calibrated.

Bayesian posterior parameter estimates were obtained using Gibbs sampling algo-

rithms as implemented in the computer program WinBugs 1.4 (Spigelhalter, Thomas,

Best, & Lunn, 2003). MCMC algorithms are receiving increasing attention in item

response theory (see for example Baker, 1998; Bolt, Cohen, & Wollack, 2001; Kim,

2001; Patz & Junker, 1999a, 1999b, Wollack, Bolt, Cohen & Lee, 2002). In MCMC

estimation, a Markov chain is simulated in which values representing parameters of

the model are repeatedly sampled from their full conditional posterior distributions

over a large number of iterations. The estimate is sampled from the posterior after

each iteration. The value taken as the MCMC estimate is the mean over iterations

sampled starting with the first iteration following burn-in. Winbugs 1.4 also provides
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an estimate of DIC for each set of items calibrated.

To derive the posterior distributions for each parameter, it was first necessary to

specify their prior distributions. Items with 3 categories are modeled using the GPCM.

The following priors were used for the GPCM: θj ∼ normal(0, 1), (j = 1, . . . , N),

ai ∼ (0, 1), (i = 1, . . . , T ), bk ∼ normal(0, 1), (i = 1, . . . , T ), τ1i ∼ normal(0, .1), (i =

1, . . . , T ), where N is the total number of examinees, and T is the total number of

items, a represents the discrimination parameter, b is the difficulty parameter, and τ1

indicates the location of category 1 relative to the item’s difficulty. For items with 3

categories (which are scored for the NAEP as x = 0, 1, 2), the following constraints

were used:
∑m

k=0 τki = 0, and τ2i = −τ1i since τ0i = 0 in Equation (1). The priors for

the RSM and PCM were subsets of these priors.

For the GRM, the following priors were used: θj ∼ normal(0, 1), (j = 1, . . . , N),

ai ∼ lognormal(0, 1), (i = 1, . . . , T ), b1i ∼ normal(0, .1), (i = 1, . . . , T ), b2i ∼

normal(0, .1)I(b1i, ), (i = 1, . . . , T ), where the notation I(b1i, ) indicates that b2i is

always sampled to be larger than b1i.

Determination of a suitable burn-in was based on results from a chain run for a

length of 11,000 iterations. The computer program Winbugs (Spiegelhalter et al., 2003)

provides several indices which can be used to determine an appropriate length for the

burn-in. Preliminary results suggested that burn-in lengths of less than 100 iterations

would be reasonable. Each of the chains actually converged relatively quickly to its

stationary distribution, usually within the first 50 or so iterations. A conservative

estimate of 1,000 iterations for the burn-in was used in this study. For each chain,

therefore, at least an additional 10,000 iterations were run subsequent to the burn-in

iterations. Estimates of model parameters were based on the means of the sampled

values from iterations following burn-in.

Cross Validation Log-Likelihood Estimates. Cross validation log-likelihoods
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(CVLLs) were estimated for the PsBF method. Two samples were drawn, a calibration

sample, Ycal in which 3,000 examinees were randomly sampled from the examinees

taking a given block, and a cross-validation sample, Ycv, in which a second sample of

3,000 were randomly drawn from the remaining examinees. Calculation of the CVLL

proceeds first by using the calibration sample to update the prior distributions of model

parameters to posterior distributions. Next, the likelihood of the Ycv for a model can

then be computed using the updated posterior distribution as a prior to (Bolt et al.,

2003) :

P (Ycv|Model) =
∫

P (Ycv|θi,Ycal,Model)fθ(θi|Ycal,Model)dθi , (8)

where P (Ycv|θi,Ycal,Model) represents the conditional likelihood, and fθ(θi|Ycal,Model)

is the conditional posterior distribution.

Estimates of CVLLs were obtained using the MATLAB software. (An example of

the MATLAB program used for this calculation is given in the Appendix.) To solve the

integration in Equation (8), 41 Gaussian quadrature nodes were used in the MATLAB.

As noted earlier, the BF index is defined relative to two different models. The PsBF

estimated in this study used the two CVLLs. The best model is taken as the for which

the CVLL is largest (Spiegelhalter et al., 1996; Bolt et al., 2001).

Results

From the 2000 state NAEP mathematics test data, 3,000 examinees were randomly

sampled for the calibration sample. Then, values for each of the four indices, LR test,

AIC, BIC, and DIC, were calculated. To obtain the CVLL estimates, another 3,000

examinees were sampled from the same block. Results are reported in Table 1.

—————————————————

Insert Table 1 About Here

—————————————————
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The calibration sample consisted of 1,466 male and 1534 female examinees. The

minimum and maximum scores over the five polytomous items on the test were 0 and

10; the average score over all five items was 3.77 and the SD was 2.29.

As shown in Table 1, the two Bayesian model selection methods identified the GRM

as the best model for the data. The DIC for the GRM was smaller than for the other

three models, and the CVLL for the GRM was the largest. The AIC and the BIC for

the GPCM were smaller indicating the GPCM fit the data best. As was noted earlier,

the LR test was appropriate for only the three nested, RSM, PCM, and GPCM. The

LR test results suggested that the PCM fit better than RSM, and the GPCM fit better

than the PCM.

Discussion for Study 1

The inconsistent results from Study 1 are somewhat consistent with previous re-

search on these model selection indices. The LR test results suggested the more highly

parameterized GPCM would be the best among the three hierarchically related models,

GPCM, PCM, and RSM. The GRM, however, was identified as the best by the DIC

and PsBF.

Study 2: Simulation Study Comparing Model Selection Indices

In the next study, we explore the behavior of these five indices further, using sim-

ulated data with known generating models and parameters. In this way, we hope to

be able to better understand how these indices might be used for model selection for

conditions encountered in practical testing situations, when nested or non-nested mod-

els are selected using model parameter estimates from either maximum likelihood or

Bayesian algorithms.

Simulation Study Design.

In Study 2, we present a simulation study to compare the performances of the
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five model selection methods. The design of the simulation study included two test

lengths, 10 and 20 items, two sample sizes, 500 and 1,000 examinees, two numbers of

categories per item, 3 and 5, and two distributions of ability, N(−1, 1) and N(0, 1).

The two test lengths were used to simulate tests having small and large numbers of

polytomously scored items. The two sample sizes were used to simulate small and large

samples. Discrimination parameters for the GPCM and GRM were randomly sampled

from a log-normal distribution, ln(0, .5). Item category difficulty parameters were

randomly drawn from normal distributions: N(−1.5, 1), N(−0.5, 1), N(0.5, 1), and

N(1.5, 1). These distributions were used for five category items. After sampling, the

difficulties were adjusted to fit them for to meet the assumptions of each polytomous

model. Location parameters of the boundary curves in GRM must be ordered, so

adjustments needed to be made when the randomly sampled ones did not result in

ordered generating parameters. In such cases, the adjacent parameters were simply

switched. And, for GPCM as Equation (1), the mean of the item category generating

parameters (b1i,..., b4i) was used as the item difficulty parameter (bi) and the difference

between bi and bki was taken as the step parameter, τki. An additional adjustment

was needed to ensure that the average of item difficulties for a simulated test was zero.

We were thus able to simulate samples of examinees whose ability distributions did

or did not match the difficulty of the test. For the items with three categories, the

location generating parameters were obtained as the mean of two adjacent generating

parameters from the generating parameters sampled for the respective five category

items. In other words, the mean of b1i and b2i and the mean of b3i and b4i became the

new b1i and b2i, respectively, for items with three categories.

Table 2 shows the item parameters used for data generation. At the left side of

the table are the generating parameters for the GRM and at the right side are the

generating parameters for the GPCM. To generate a data set for the PCM, only the b
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and τ parameters from the right side of the table were used. To generate a data set

for the RSM, the τs of Item 1 were used for all items on the test. The first 10 item

parameters were used for generating the 10-item tests, and all 20 items were used for

generating the 20-item tests.

—————————————————

Insert Table 2-1 and 2-2 About Here

—————————————————

There were a total of 64 different conditions simulated in this study (2 test length

× 2 sample sizes × 2 category length × 2 ability distributions × 4 true models).

Ten replications were generated for each condition. Item parameter estimation was as

described for Study 1.

Simulation Study Results

Recovery of Item Parameters. Since the model-selection indices in this study

were calculated based on estimated model parameters, we first checked the quality of

recovery of the item parameter estimates. Parameter recovery was evaluated using

both the root mean square error (RMSE) and product moment correlations (σ) be-

tween the generating and the estimated parameters. Before calculating RMSEs, the

estimated parameters were linked to the generating parameter scale using the mean-

mean procedure (Loyd & Hoover, 1980).

—————————————————

Insert Table 3-1, 3-2, 3-3, and 3-4 About Here

—————————————————

The results in Table 3 are in general agreement with recovery results reported in

the literature. In Table 3-1, the recovery results for the GPCM are presented. Most

σs were larger than .95 and the RMSEs were around .1 for both MMLE and MCMC.
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Two very large RMSEs (1.96 and 2.19) and two very small σs (0.26 and 0.46) were

detected for MMLE for τ2 and τ3. The ability distribution for these data was N(-1,1),

indicating a non-match to the test difficulty. The results appear to suggest some lack

of information may be present in a few of the data sets for estimating these category

parameters. Parameters for the PCM and RSM appear to have been recovered well

in every condition (see Tables 3-2 and 3-3). Recovery was nearly the same for both

MMLE and MCMC for the slope and location parameters for these two models. For

the GRM (see Table 3-4), the recovery of all the item parameters appear good for

MCMC algorithms. Recovery for the MMLE, however, was not as good for the N(-1,1)

ability distribution.

—————————————————

Insert Table 4-1, 4-2, 4-3, and 4-4 About Here

—————————————————

Model Selection Indices. In Tables 4-1 to 4-4, we present the average values of

DIC, CVLL, and G2 over the 10 replications in each condition. As described above,

LR, AIC, and BIC indices are obtained based on G2. The three values are labeled

DIC-GR, CVLL-GR, G2-GR to indicate they were estimated by calibrating the data

using the GRM. Likewise, DIC-GP, CVLL-GP, G2-GP are used to indicate the indices

were obtained for the GPCM; DIC-P, CVLL-P, G2-P indicate calibration was done

using the PCM; and DIC-R, CVLL-R, G2-R indicate calibration was done using the

RSM.

In Table 4-1, the average DIC-GP values were smallest for the GPCM as the gener-

ating model is GPCM for each condition. For this same generating model, the average

CVLL-GP values were larger than for other average CVLL values for each condition.

Since the average G2-GP values were smaller than for the other models for most con-

ditions, it was reasonable to expect that the other model selection indices would also
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suggest the GPCM. Similar patterns are evident in Tables 4-2 and 4-3: The average

DIC and G2 for true model was smaller than other DIC and G2 averages, respectively,

and the average CVLLs for the true model was larger than other average CVLLs for

each condition. As shown in Table 4-4 when the true model is GRM, the GPCM was

often selected as the better model by the DIC and PsBF indices. It appears that the

power of the model selection methods may be lower when the true model was GRM.

The information in Table 5 presents the frequencies of model selection for each of

the five indices for each of the conditions of the study. When data were generated by

a RSM, the expectation was that a RSM would be selected as the best model.

—————————————————

Insert Table 5 About Here

—————————————————

For example, for the 10 replications in the 20-item test, N = 1000, and θ ∼ N(0, 1)

condition for data generated with RSM (see the very bottom row of Table 5), the DIC

index selected GRM 0 times, GPCM 0 times, PCM 0 times and RSM 10 times as the

best model. In this condition, all the five indices selected the true model. The last

four columns of Table 5 present the model selection performance for the LR. Here, only

the three hierarchically related models (GPCM, PCM, and RSM) were considered. LR

worked very well, demonstrating about 98% (= 1−9/480) accuracy in finding the true

models. AIC and BIC also demonstrated good accuracy when the generating ability

distribution was N(0,1). These two indices had some difficulty in identifying the true

GRM when θ ∼ N(−1, 1). This appeared to be related to the poor estimation by

Parscale for those conditions. This result is apparent in Figure 4 (described below).

DIC functioned well for 20 items and 1,000 examinees conditions, but appeared to be

less accurate in recognizing the true GRM in the other conditions. For example, in the

conditions of 10 items and 500 examinees, DIC worked with only 40% (= 1 − 16/40)



IRT Model Selection Methods 16

accuracy in finding the true GRM. PsBF also performed well for selection of GPCM,

PCM, and RSM in most conditions, but had some problems in finding the true GRM

in more than half of the conditions.

Summaries of the performance of three indices (DIC, PsBF, and BIC) are plotted in

Figures 1 to 4. LR is not shown since it was not appropriate for comparisons involving

the GRM and the other models considered in this study. Further, since the performance

of AIC was similar to BIC, AIC was left off the figures to enhance readability. Finally,

only the GRM and GPCM were considered in these figures since all four model selection

indices performed well for the PCM and RSM. The plots in Figures 1 to 4 show the

proportions of model selections for the different three indices for each of the simulation

conditions.

—————————————————

Insert Figure 1 About Here

—————————————————

In Figure 1, the model selection proportions are plotted between GRM and GPCM

for different test length (n = 10, and n = 20). When the true model was GPCM, the

three indices performed well in selection of the correct model. When the true model

was the GRM, however, the DIC showed poor performance when n = 10. All the three

indices showed moderate accuracy when n = 20.

—————————————————

Insert Figure 2 About Here

—————————————————

In Figure 2, the model selection proportions are plotted between GRM and GPCM

by sample size (N = 500 and N = 1, 000). When the true model was the GRM, the

performance of DIC appeared to be better for the larger sample size. When N = 500,

DIC selected the wrong model (i.e., the GPCM) as the better model more than half
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the time. When N = 1, 000, DIC performed better, accurately selecting the correct

model about 85% of the cases. In Figure 3, the performance of the PsBF suggest it

was sensitive to the number of categories when the true model was the GRM. For a

test with five-category items, PsBF selected the true GRM with 90% accuracy.

—————————————————

Insert Figure 3 About Here

—————————————————

Figure 4 present model selection proportions between the GRM and GPCM for the

two different ability distribution, (N(−1, 1) and N(0, 1)). When the true model was the

GRM, DIC and PsBF both demonstrated moderate accuracy in selecting the correct

model. The performance BIC, however, differed depending on the ability distribution.

When θ ∼ N(0, 1), BIC worked perfectly.

—————————————————

Insert Figure 4 About Here

—————————————————

Discussion & Conclusions

When model selection is inaccurate, then the benefits of the model do not attach to

the resulting parameter estimates. The LR test has been used often for model selection.

As expected, LR showed good performance to compare hierarchically nested models in

this study. When models are not nested, however, the LR test is not appropriate and

other methods such as one of the other four methods discussed in this study will need

to be considered.

Differences in model selection were detected among the five indices examined in this

study. AIC and BIC appeared to be capable of accurately selecting the correct model

for either nested or non-nested models except when the ability distribution and the test
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difficulty were not matched. DIC and PsBF, which are model selection methods based

on Bayesian parameter estimation, appeared to be useful for model selection when the

numbers of items and examinees were large. The peformance of DIC and PsBF were

inconsistent, however, for fewer items and examinees. In general, it appears that for

comparisons between the GRM and GPCM, the five indices were useful, when the true

model was GPCM. When the true model was the GRM, model selection accuracy for

DIC and PsBF differed according to the given conditions.

Since the MCMC algorithm as implemented in Winbugs provided good recovery in

item parameter estimation (as shown in Table 3), reasonable confidence was possible in

the item parameter estimates used for estimating the DIC and PsBF in this study. It is

likewise evident that additional conditions need to be studied to better understand how

these two indices perform. They do appear to be useful, however, model selection for

nested or non-nested model under the conditions simulated in this study. The MMLE

algorithm as implemented in Parscale provided poor to adequate recovery for the GRM

when the ability distribution did not match the difficulty of the test. The reason for

the poor performances of AIC and BIC for these conditions, therefore, was not clear.

Further study is suggested for the GRM calibration by Parscale. Reise and Yu (1990),

in a recovery study for the GRM MULTILOG (Thissen, 1991) concluded at least 500

examinees were needed for adequate calibration of 25 items with 5 categories. They

did not consider the case where ability and test difficulty were not matched.

As can be seen from the results of this study, inconsistencies and inaccuracies

were found in model selection among the different indices in some of the simulated

conditions. Some indices appeared to function better under some of the conditions

than under others and for some models than for others. Deciding which of these

conditions holds for a particular test or model or set of data, however, is difficult at

best, since the true model is not known for real data. Consequently, one needs to look
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to the results of studies such as this one to help inform a decision as to which of the

indices provides the most consistently accurate results.

In addition, it is important to consider other, non-statistical issues in a model

selection process. Some models may be more appropriate for one type of psychological

process than another or for one test purposes than another. This article was intended

to have some contribution for the situation in which when one needs to compare various

models statistically. Even though GPCM appeared to be more accurately selected by

the five indices considered in this study, it may be that other reasons exist, such as the

benefits of a Rasch model, and should be considered for selection of PCM or RSM.
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Table 1. Comparisons of model selection methods (2000 state NAEP math data:
5 polytomous items from block 15)

Model Selection Methods
DIC PsBF LR test AIC BIC

Model (CVLLs) G2 LR
RSM 26005.10 -11950 26692.25 26704.25 26740.29
PCM 23375.70 -10625 24237.29 2545.96* 24257.29 24317.36
GPCM 22954.30 -10393 24121.30 115.99# 24151.30 24241.40
GRM 22769.70 -10292 24121.31 24151.31 24241.41
* p (χ2

df=4 > 9.49) < 0.05
# p (χ2

df=5 > 11.07) < 0.05
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Table 2-1. Generating Item Parameters When the # of Categories is 5

GRM GPCM
Item a b1 b2 b3 b4 a b τ1 τ2 τ3
1 1.1886 -1.5932 -0.8280 1.2501 2.2811 1.1586 -0.4198 2.5619 -0.0422 -1.6654
2 0.9645 -2.3526 -0.2945 0.6007 1.8355 0.5127 -0.2436 0.8767 0.4519 -1.6650
3 1.5168 -0.6712 -0.0575 1.2846 2.3863 1.4293 0.6138 3.0479 -0.1036 -0.9495
4 2.4825 -1.1982 -0.0425 1.2228 2.4250 2.2519 -0.3700 -0.4075 1.8816 -0.0003
5 0.5849 -1.8364 -1.1341 -0.1715 0.6206 0.7076 0.1630 2.3457 0.1124 -0.6714
6 1.1326 -3.6806 -2.2300 -0.3021 1.4804 1.5357 0.5965 1.4453 0.0784 -0.2638
7 1.6336 -0.5844 1.0582 1.8108 2.6156 1.8720 0.1134 1.2717 -0.2400 0.4988
8 0.8229 -3.8306 -0.9803 0.4869 1.1248 0.4507 -0.4001 1.8994 -0.6004 -0.2805
9 1.9720 -3.5078 -1.2555 0.1301 0.7902 0.4865 -0.3764 3.1719 -0.0391 -2.0811
10 1.2124 -2.5060 -1.6501 0.7196 1.6200 1.3305 0.1504 1.5872 -0.1491 -0.3405
11 1.0975 -2.1523 -1.3996 0.5944 1.4757 0.8188 -0.1870 2.2012 -0.3783 -1.1993
12 0.7977 0.2119 1.1438 2.0418 2.8111 1.4120 -0.0299 0.7333 0.6034 -0.7403
13 2.0213 -3.0703 -1.1250 0.3347 1.5155 1.5035 0.3642 1.2341 1.1193 0.3773
14 1.8480 -0.6373 0.2158 1.0017 1.8338 1.4275 0.3456 0.0307 1.0191 0.2828
15 1.4760 -1.9734 -0.0262 0.9636 2.4115 1.9062 -0.2920 0.4943 1.5608 -1.3580
16 1.4036 -2.6372 -1.3044 -0.3281 0.6323 1.3970 -0.3448 1.6764 0.2668 -0.0173
17 2.4665 -2.0896 -0.9352 1.4185 2.3993 1.8138 0.1603 1.1576 0.4195 -1.2433
18 0.9345 -1.9131 -0.7949 0.4391 1.2628 0.5481 -0.2463 2.1405 -0.1835 -1.4376
19 1.2435 -1.6127 -0.6638 1.6621 2.8455 0.9901 0.2077 1.6048 -0.8582 0.4070
20 1.6544 -2.0474 -0.1620 0.6668 1.9576 0.9246 0.1946 1.6204 0.9231 -0.1622
Mean 1.4227 -1.9841 -0.6233 0.7913 1.8162 1.2239 0.0000 1.5347 0.2921 -0.6255
SD 0.5324 1.0741 0.8554 0.6807 0.7012 0.5286 0.3347 0.9224 0.7114 0.7872
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Table 2-2. Generating Item Parameters When the # of Categories is 3

GRM GPCM
Item a b1 b2 a b τ1

1 1.1886 -1.2106 1.7656 1.1586 -0.4198 1.2599
2 0.9645 -1.3236 1.2181 0.5127 -0.2436 0.6643
3 1.5168 -0.3644 1.8354 1.4293 0.6138 1.4721
4 2.4825 -0.6204 1.8239 2.2519 -0.3700 0.7371
5 0.5849 -1.4853 0.2246 0.7076 0.1630 1.2291
6 1.1326 -2.9553 0.5891 1.5357 0.5965 0.7619
7 1.6336 0.2369 2.2132 1.8720 0.1134 0.5159
8 0.8229 -2.4055 0.8059 0.4507 -0.4001 0.6495
9 1.9720 -2.3817 0.4602 0.4865 -0.3764 1.5664
10 1.2124 -2.0780 1.1698 1.3305 0.1504 0.7191
11 1.0975 -1.7760 1.0351 0.8188 -0.1870 0.9115
12 0.7977 0.6778 2.4265 1.4120 -0.0299 0.6684
13 2.0213 -2.0976 0.9251 1.5035 0.3642 1.1767
14 1.8480 -0.2108 1.4178 1.4275 0.3456 0.5249
15 1.4760 -0.9998 1.6876 1.9062 -0.2920 1.0276
16 1.4036 -1.9708 0.1521 1.3970 -0.3448 0.9716
17 2.4665 -1.5124 1.9089 1.8138 0.1603 0.7886
18 0.9345 -1.3540 0.8510 0.5481 -0.2463 0.9785
19 1.2435 -1.1383 2.2538 0.9901 0.2077 0.3733
20 1.6544 -1.1047 1.3122 0.9246 0.1946 1.2718
Mean 1.4227 -1.3038 1.3038 1.2239 0.0000 0.9134
SD 0.5324 0.9203 0.6763 0.8554 0.3347 0.3306
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Table 3-1. GPCM Recovery Statistics: RMSE(σ)

MMLE
test sample # of ability
length size categ. distr. a b τ1 τ2 τ3
n=10 500 NC=3 N(-1,1) 0.15(0.97) 0.13(0.95) 0.13(0.94) ( ) ( )

N(0,1) 0.14(0.97) 0.09(0.98) 0.18(0.90) ( ) ( )
NC=5 N(-1,1) 0.15(0.97) 0.11(0.96) 0.21(0.98) 0.20(0.96) 0.31(0.93)

N(0,1) 0.12(0.98) 0.07(0.99) 0.24(0.97) 0.22(0.94) 0.22(0.97)
1000 NC=3 N(-1,1) 0.12(0.98) 0.09(0.97) 0.13(0.94) ( ) ( )

N(0,1) 0.10(0.98) 0.07(0.98) 0.12(0.96) ( ) ( )
NC=5 N(-1,1) 0.22(0.93) 0.12(0.96) 0.23(0.98) 1.96(0.26) 2.19(0.46)

N(0,1) 0.08(0.99) 0.05(0.99) 0.17(0.99) 0.16(0.97) 0.17(0.98)
n=20 500 NC=3 N(-1,1) 0.14(0.97) 0.11(0.95) 0.14(0.93) ( ) ( )

N(0,1) 0.12(0.97) 0.09(0.97) 0.12(0.94) ( ) ( )
NC=5 N(-1,1) 0.10(0.98) 0.10(0.96) 0.18(0.98) 0.19(0.96) 0.25(0.95)

N(0,1) 0.12(0.98) 0.07(0.98) 0.23(0.97) 0.18(0.97) 0.19(0.97)
1000 NC=3 N(-1,1) 0.10(0.98) 0.08(0.97) 0.09(0.96) ( ) ( )

N(0,1) 0.09(0.99) 0.06(0.99) 0.10(0.96) ( ) ( )
NC=5 N(-1,1) 0.09(0.99) 0.06(0.98) 0.15(0.99) 0.13(0.98) 0.19(0.97)

N(0,1) 0.07(0.99) 0.04(0.99) 0.15(0.99) 0.13(0.98) 0.14(0.98)

MCMC
test sample # of ability
length size categ. distr. a b τ1 τ2 τ3
n=10 500 NC=3 N(-1,1) 0.15(0.97) 0.13(0.95) 0.14(0.94) ( ) ( )

N(0,1) 0.14(0.97) 0.09(0.98) 0.19(0.89) ( ) ( )
NC=5 N(-1,1) 0.15(0.97) 0.14(0.94) 0.24(0.98) 0.22(0.95) 0.33(0.93)

N(0,1) 0.12(0.98) 0.07(0.99) 0.24(0.98) 0.22(0.95) 0.22(0.97)
1000 NC=3 N(-1,1) 0.12(0.98) 0.09(0.97) 0.13(0.94) ( ) ( )

N(0,1) 0.12(0.98) 0.09(0.97) 0.13(0.94) ( ) ( )
NC=5 N(-1,1) 0.10(0.99) 0.08(0.98) 0.19(0.99) 0.15(0.98) 0.19(0.97)

N(0,1) 0.08(0.99) 0.05(0.99) 0.18(0.99) 0.16(0.97) 0.18(0.98)
n=20 500 NC=3 N(-1,1) 0.14(0.97) 0.11(0.94) 0.15(0.92) ( ) ( )

N(0,1) 0.12(0.97) 0.09(0.96) 0.12(0.93) ( ) ( )
NC=5 N(-1,1) 0.10(0.98) 0.12(0.95) 0.19(0.98) 0.21(0.96) 0.27(0.95)

N(0,1) 0.12(0.98) 0.07(0.98) 0.22(0.97) 0.18(0.97) 0.19(0.97)
1000 NC=3 N(-1,1) 0.10(0.98) 0.08(0.97) 0.10(0.96) ( ) ( )

N(0,1) 0.09(0.99) 0.06(0.99) 0.10(0.96) ( ) ( )
NC=5 N(-1,1) 0.09(0.99) 0.10(0.97) 0.17(0.98) 0.15(0.98) 0.21(0.97)

N(0,1) 0.07(0.99) 0.04(0.99) 0.16(0.99) 0.13(0.98) 0.14(0.98)
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Table 3-2. PCM Recovery Statistics: RMSE(σ)

MMLE
test sample # of ability
length size categ. distr. b τ1 τ2 τ3
n=10 500 NC=3 N(-1,1) 0.09(0.97) 0.11(0.96) ( ) ( )

N(0,1) 0.07(0.98) 0.10(0.97) ( ) ( )
NC=5 N(-1,1) 0.09(0.97) 0.14(0.99) 0.15(0.98) 0.20(0.97)

N(0,1) 0.06(0.99) 0.20(0.99) 0.17(0.98) 0.17(0.98)
1000 NC=3 N(-1,1) 0.06(0.99) 0.09(0.97) ( ) ( )

N(0,1) 0.05(0.99) 0.07(0.98) ( ) ( )
NC=5 N(-1,1) 0.05(0.99) 0.09(1.00) 0.11(0.99) 0.16(0.98)

N(0,1) 0.05(0.99) 0.13(0.99) 0.10(0.99) 0.12(0.99)
n=20 500 NC=3 N(-1,1) 0.09(0.97) 0.12(0.94) ( ) ( )

N(0,1) 0.07(0.98) 0.09(0.96) ( ) ( )
NC=5 N(-1,1) 0.09(0.97) 0.14(0.99) 0.16(0.98) 0.21(0.97)

N(0,1) 0.07(0.98) 0.17(0.98) 0.15(0.98) 0.16(0.98)
1000 NC=3 N(-1,1) 0.06(0.98) 0.07(0.98) ( ) ( )

N(0,1) 0.05(0.99) 0.07(0.98) ( ) ( )
NC=5 N(-1,1) 0.07(0.98) 0.10(0.99) 0.13(0.98) 0.16(0.98)

N(0,1) 0.05(0.99) 0.12(0.99) 0.11(0.99) 0.10(0.99)

MCMC
test sample # of ability
length size categ. distr. b τ1 τ2 τ3
n=10 500 NC=3 N(-1,1) 0.09(0.97) 0.11(0.96) ( ) ( )

N(0,1) 0.07(0.98) 0.10(0.97) ( ) ( )
NC=5 N(-1,1) 0.09(0.97) 0.14(0.99) 0.15(0.98) 0.20(0.97)

N(0,1) 0.06(0.99) 0.20(0.99) 0.17(0.98) 0.17(0.98)
1000 NC=3 N(-1,1) 0.06(0.99) 0.09(0.97) ( ) ( )

N(0,1) 0.05(0.99) 0.07(0.98) ( ) ( )
NC=5 N(-1,1) 0.05(0.99) 0.09(1.00) 0.11(0.99) 0.16(0.98)

N(0,1) 0.04(0.99) 0.13(0.99) 0.10(0.99) 0.12(0.99)
n=20 500 NC=3 N(-1,1) 0.09(0.97) 0.12(0.94) ( ) ( )

N(0,1) 0.07(0.98) 0.09(0.96) ( ) ( )
NC=5 N(-1,1) 0.11(0.95) 0.16(0.99) 0.18(0.97) 0.22(0.96)

N(0,1) 0.07(0.98) 0.16(0.98) 0.15(0.98) 0.16(0.98)
1000 NC=3 N(-1,1) 0.06(0.98) 0.07(0.98) ( ) ( )

N(0,1) 0.05(0.99) 0.07(0.98) ( ) ( )
NC=5 N(-1,1) 0.07(0.98) 0.10(0.99) 0.13(0.98) 0.16(0.98)

N(0,1) 0.05(0.99) 0.12(0.99) 0.11(0.99) 0.10(0.99)
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Table 3-3. RSM Recovery Statistics: RMSE(σ)

MMLE
test sample # of ability
length size categ. distr. b τ1 τ2 τ3
n=10 500 NC=3 N(-1,1) 0.07(0.98) 0.03() () ()

N(0,1) 0.07(0.98) 0.04() () ()
NC=5 N(-1,1) 0.06(0.99) 0.06() 0.05() 0.06()

N(0,1) 0.05(0.99) 0.06() 0.04() 0.05()
1000 NC=3 N(-1,1) 0.05(0.99) 0.03() () ()

N(0,1) 0.05(0.99) 0.03() () ()
NC=5 N(-1,1) 0.04(0.99) 0.04() 0.04() 0.05()

N(0,1) 0.03(1.00) 0.04() 0.04() 0.03()
n=20 500 NC=3 N(-1,1) 0.08(0.97) 0.03() () ()

N(0,1) 0.07(0.98) 0.03() () ()
NC=5 N(-1,1) 0.07(0.98) 0.04() 0.02() 0.07()

N(0,1) 0.05(0.99) 0.04() 0.02() 0.02()
1000 NC=3 N(-1,1) 0.06(0.99) 0.02() () ()

N(0,1) 0.05(0.99) 0.02() () ()
NC=5 N(-1,1) 0.04(0.99) 0.03() 0.02() 0.03()

N(0,1) 0.04(0.99) 0.04() 0.02() 0.02()

MCMC
test sample # of ability
length size categ. distr. b τ1 τ2 τ3
n=10 500 NC=3 N(-1,1) 0.07(0.98) 0.03() () ()

N(0,1) 0.08(0.98) 0.04() () ()
NC=5 N(-1,1) 0.06(0.99) 0.06() 0.05() 0.06()

N(0,1) 0.05(0.99) 0.06() 0.04() 0.05()
1000 NC=3 N(-1,1) 0.05(0.99) 0.03() () ()

N(0,1) 0.05(0.99) 0.03() () ()
NC=5 N(-1,1) 0.04(0.99) 0.04() 0.04() 0.05()

N(0,1) 0.03(1.00) 0.04() 0.04() 0.03()
n=20 500 NC=3 N(-1,1) 0.08(0.97) 0.02() () ()

N(0,1) 0.07(0.98) 0.03() () ()
NC=5 N(-1,1) 0.07(0.98) 0.04() 0.02() 0.07()

N(0,1) 0.05(0.99) 0.04() 0.02() 0.02()
1000 NC=3 N(-1,1) 0.06(0.99) 0.02() () ()

N(0,1) 0.05(0.99) 0.02() () ()
NC=5 N(-1,1) 0.04(0.99) 0.04() 0.02() 0.03()

N(0,1) 0.04(0.99) 0.03() 0.02() 0.02()
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Table 3-4. GRM Recovery Statistics: RMSE(σ)

MMLE
test sample # of ability
length size categ. distr. a b1 b2 b3 b4
n=10 500 NC=3 N(-1,1) 0.21(0.94) 0.14(0.99) 0.22(0.95) ( ) ( )

N(0,1) 0.18(0.95) 0.21(0.98) 0.15(0.98) ( ) ( )
NC=5 N(-1,1) 0.28(0.88) 0.61(0.86) 0.42(0.88) 0.45(0.76) 0.60(0.70)

N(0,1) 0.13(0.97) 0.30(0.97) 0.12(0.99) 0.11(0.99) 0.18(0.97)
1000 NC=3 N(-1,1) 0.35(0.83) 0.64(0.76) 0.60(0.58) ( ) ( )

N(0,1) 0.11(0.98) 0.14(0.99) 0.10(0.99) ( ) ( )
NC=5 N(-1,1) 0.33(0.85) 0.69(0.81) 0.51(0.82) 0.54(0.65) 0.67(0.56)

N(0,1) 0.10(0.98) 0.23(0.98) 0.09(0.99) 0.08(0.99) 0.15(0.98)
n=20 500 NC=3 N(-1,1) 0.34(0.85) 0.66(0.77) 0.68(0.62) ( ) ( )

N(0,1) 0.16(0.96) 0.19(0.98) 0.17(0.97) ( ) ( )
NC=5 N(-1,1) 0.21(0.93) 0.62(0.84) 0.39(0.90) 0.30(0.91) 0.41(0.86)

N(0,1) 0.11(0.98) 0.22(0.98) 0.13(0.99) 0.13(0.98) 0.17(0.97)
1000 NC=3 N(-1,1) 0.32(0.85) 0.58(0.77) 0.59(0.62) ( ) ( )

N(0,1) 0.11(0.98) 0.12(0.99) 0.12(0.99) ( ) ( )
NC=5 N(-1,1) 0.28(0.88) 0.62(0.82) 0.43(0.86) 0.44(0.78) 0.56(0.72)

N(0,1) 0.08(0.99) 0.19(0.99) 0.09(0.99) 0.09(0.99) 0.12(0.98)

MCMC
test sample # of ability
length size categ. distr. a b1 b2 b3 b4
n=10 500 NC=3 N(-1,1) 0.21(0.94) 0.16(0.99) 0.24(0.94) ( ) ( )

N(0,1) 0.18(0.95) 0.24(0.97) 0.16(0.97) ( ) ( )
NC=5 N(-1,1) 0.13(0.97) 0.21(0.98) 0.13(0.99) 0.17(0.97) 0.40(0.89)

N(0,1) 0.13(0.97) 0.41(0.95) 0.15(0.99) 0.12(0.99) 0.20(0.96)
1000 NC=3 N(-1,1) 0.12(0.98) 0.11(0.99) 0.18(0.96) ( ) ( )

N(0,1) 0.11(0.98) 0.15(0.99) 0.11(0.99) ( ) ( )
NC=5 N(-1,1) 0.09(0.99) 0.14(0.99) 0.09(1.00) 0.14(0.98) 0.37(0.88)

N(0,1) 0.10(0.98) 0.24(0.98) 0.09(0.99) 0.08(0.99) 0.15(0.98)
n=20 500 NC=3 N(-1,1) 0.18(0.95) 0.16(0.99) 0.26(0.94) ( ) ( )

N(0,1) 0.15(0.96) 0.21(0.98) 0.18(0.97) ( ) ( )
NC=5 N(-1,1) 0.13(0.97) 0.20(0.99) 0.11(0.99) 0.20(0.96) 0.38(0.90)

N(0,1) 0.12(0.98) 0.24(0.98) 0.13(0.99) 0.13(0.98) 0.19(0.97)
1000 NC=3 N(-1,1) 0.10(0.98) 0.09(1.00) 0.17(0.97) ( ) ( )

N(0,1) 0.11(0.98) 0.12(0.99) 0.12(0.99) ( ) ( )
NC=5 N(-1,1) 0.09(0.99) 0.10(1.00) 0.08(1.00) 0.13(0.98) 0.22(0.96)

N(0,1) 0.08(0.99) 0.20(0.98) 0.10(0.99) 0.09(0.99) 0.13(0.98)
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Table 4-1. Averages of Model Selection Indices When Data Generated With GPCM

Average indices of model-selection methods (SD)
test sample # of ability
length size categ. distr. DIC-GR DIC-GP DIC-P DIC-R CVLL-GR CVLL-GP
n=10 500 NC=3 N(-1,1) 8227.83 8210.47 8456.61 8559.12 -3878.33 -3871.92

(47.77) (47.83) (63.66) (69.21) (7.94) (6.96)
N(0,1) 8958.86 8945.76 9240.11 9391.02 -4251.13 -4248.10

(71.10) (70.16) (59.99) (47.37) (10.03) (10.16)
NC=5 N(-1,1) 10868.06 10759.84 11123.36 12041.41 -5280.38 -5238.14

(155.21) (153.79) (146.91) (111.67) (19.45) (16.13)
N(0,1) 12105.96 12000.60 12418.10 13168.42 -5771.53 -5740.22

(58.15) (57.34) (81.46) (81.37) (9.70) (7.77)
1000 NC=3 N(-1,1) 16200.15 16179.43 16717.81 16943.11 -7782.64 -7744.80

(151.44) (151.75) (137.79) (149.37) (53.61) (15.27)
N(0,1) 17718.57 17700.16 18291.38 18591.77 -8454.62 -8459.27

(106.87) (107.23) (88.57) (88.07) (12.41) (16.62)
NC=5 N(-1,1) 21603.17 21419.66 22144.68 24039.32 -10463.84 -10397.03

(135.74) (134.13) (126.71) (156.67) (10.78) (12.94)
N(0,1) 23992.20 23834.21 24659.04 26189.41 -11534.71 -11467.75

(220.90) (212.52) (167.39) (162.43) (17.00) (14.56)
n=20 500 NC=3 N(-1,1) 15578.10 15529.12 15944.91 16111.66 -7556.74 -7541.39

(235.23) (236.35) (237.13) (251.60) (14.42) (12.10)
N(0,1) 17331.42 17296.55 17747.14 18007.60 -8399.48 -8385.12

(180.53) (182.50) (139.15) (144.29) (12.12) (13.38)
NC=5 N(-1,1) 21066.99 20838.91 21452.04 23200.29 -10244.96 -10178.94

(283.85) (271.21) (253.77) (291.01) (8.62) (7.26)
N(0,1) 23243.91 23026.14 23701.74 25539.18 -11212.89 -11146.44

(190.90) (181.48) (194.26) (197.52) (19.61) (17.51)
1000 NC=3 N(-1,1) 31273.87 31217.71 32103.78 32467.20 -15151.43 -15133.44

(287.62) (284.84) (236.48) (231.09) (10.40) (8.24)
N(0,1) 34470.82 34420.76 35343.29 35922.71 -16850.19 -16834.62

(163.73) (169.46) (168.18) (155.17) (14.51) (13.42)
NC=5 N(-1,1) 41743.76 41417.15 42649.15 46309.79 -20315.48 -20227.88

(375.87) (392.83) (399.35) (371.08) (15.66) (16.15)
N(0,1) 46525.63 46205.39 47552.28 51319.52 -22709.24 -22592.41

(318.29) (318.98) (267.80) (269.75) (13.58) (14.82)

test sample # of ability

length size categ. distr. CVLL-P CVLL-R G
2-GR G

2-GP G
2-P G

2-R
n=10 500 NC=3 N(-1,1) -3986.99 -4041.36 8559.73 8551.62 8725.87 8844.01

(2.52) (23.80) (50.05) (48.86) (57.93) (64.36)
N(0,1) -4408.33 -4479.00 9343.30 9337.74 9552.69 9719.28

(6.57) (4.77) (58.83) (58.54) (56.13) (43.01)
NC=5 N(-1,1) -5427.02 -5825.37 11338.67 11292.35 11780.06 13225.02

(10.16) (3.71) (138.27) (133.73) (699.36) (1231.92)
N(0,1) -5952.46 -6353.54 12657.38 12610.65 12920.28 13716.64

(6.94) (4.96) (48.17) (47.58) (61.40) (79.49)
1000 NC=3 N(-1,1) -8021.11 -8127.87 16960.35 16949.44 17326.99 17566.87

(6.32) (3.44) (127.83) (126.49) (120.74) (131.82)
N(0,1) -8759.74 -8907.06 18592.93 18582.64 18993.68 19307.02

(5.37) (3.60) (69.30) (70.40) (71.89) (70.88)
NC=5 N(-1,1) -10808.24 -11703.25 22656.65 22680.76 22949.53 26190.14

(6.59) (4.50) (121.77) (403.86) (221.58) (2330.62)
N(0,1) -11901.23 -12654.90 25250.93 25166.59 25780.16 27395.79

(11.13) (5.13) (167.60) (160.02) (145.84) (125.79)
n=20 500 NC=3 N(-1,1) -7704.92 -7807.92 16106.83 16079.72 16443.74 16801.69

(10.46) (7.07) (236.72) (239.19) (251.56) (455.97)
N(0,1) -8643.95 -8770.32 17935.00 17919.44 18323.33 18618.07

(6.72) (6.54) (145.82) (146.87) (111.21) (116.47)
NC=5 N(-1,1) -10507.95 -11412.93 21714.83 21585.50 21836.88 26708.87

(9.54) (2.89) (269.22) (258.44) (260.15) (4070.54)
N(0,1) -11482.17 -12485.09 24007.09 23884.09 24478.90 26593.08

(13.33) (4.53) (163.30) (156.67) (177.14) (523.60)
1000 NC=3 N(-1,1) -15561.67 -15752.03 32456.22 32421.83 33175.14 33572.52

(5.60) (5.50) (270.66) (269.55) (227.39) (223.00)
N(0,1) -17281.16 -17560.05 35831.56 35800.55 36586.61 37195.95

(10.21) (5.32) (144.27) (147.99) (148.07) (132.07)
NC=5 N(-1,1) -20839.26 -22599.45 43344.61 43123.94 44708.88 49083.12

(9.49) (4.38) (366.09) (381.75) (3922.05) (3232.45)
N(0,1) -23320.61 -25150.01 48329.60 48105.44 49179.56 53147.16

(10.93) (5.82) (268.37) (274.87) (276.72) (218.78)
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Table 4-2. Averages of Model Selection Indices When Data Generated With PCM

Average indices of model-selection methods (SD)
test sample # of ability
length size categ. distr. DIC-GR DIC-GP DIC-P DIC-R CVLL-GR CVLL-GP
n=10 500 NC=3 N(-1,1) 8459.81 8440.44 8434 8537.05 -4113.17 -4100.35

(124.83) (125.09) (121.51) (111.45) (11.54) (10.77)
N(0,1) 9138.36 9123 9115.32 9255.64 -4308.87 -4302.59

(89.59) (90.51) (87.97) (80.94) (16.42) (15.51)
NC=5 N(-1,1) 11066.35 10968.59 10955.41 11726.14 -5332.65 -5302.91

(186.23) (184.86) (181.87) (191.89) (16.47) (8.27)
N(0,1) 12262.52 12173.91 12167.34 12861.2 -5924 -5899.1

(132.5) (124.78) (119.07) (104.87) (11.04) (10.86)
1000 NC=3 N(-1,1) 16925.48 16898.9 16895.86 17119.74 -7980.45 -7972.27

(172.32) (168.22) (163.36) (156.82) (12.16) (13.18)
N(0,1) 18272.63 18258.08 18250.99 18552.38 -8689.78 -8673.29

(131.72) (133.56) (129.03) (114.39) (14.88) (12.99)
NC=5 N(-1,1) 22059.61 21893.8 21884.15 23477.55 -10619.21 -10556.65

(111.42) (110.96) (110.36) (106.33) (8.71) (9.85)
N(0,1) 24544.49 24417.25 24401.11 25765.91 -11708.74 -11661.05

(144.5) (151.76) (147.41) (91.1) (7.47) (11.59)
n=20 500 NC=3 N(-1,1) 16681.73 16637.14 16616.14 16791.55 -8020.71 -8011.02

(161.03) (167.24) (164.04) (148.37) (10.94) (11.44)
N(0,1) 18220.74 18184.72 18159.1 18368.24 -8670.21 -8663.99

(115.67) (115.02) (108.19) (115.09) (7.6) (8.41)
NC=5 N(-1,1) 22041.61 21843.23 21820.66 23263.55 -10783.27 -10756.36

(130.99) (128.04) (128.85) (152.12) (19.04) (19.6)
N(0,1) 24564.5 24389.87 24368.98 25767.26 -12173.95 -12129.79

(153.75) (160.36) (154.25) (139.87) (13.1) (15.59)
1000 NC=3 N(-1,1) 33069.23 33006.38 32992.26 33346.34 -16141.22 -16121.02

(302.22) (303.14) (297.26) (310.11) (14.76) (14.61)
N(0,1) 36124.18 36067.9 36047.7 36499.86 -17414.76 -17383.76

(178.18) (187.03) (187.57) (201.68) (22.98) (11.72)
NC=5 N(-1,1) 44016.36 43716.58 43691.77 46650.29 -21644.81 -21552.78

(459.96) (457.51) (455.74) (455.37) (13.15) (15.65)
N(0,1) 48837.64 48557.13 48532.01 51446.77 -23924.22 -23805.12

(259.85) (254.46) (251.32) (233.93) (22.2) (22.08)

test sample # of ability

length size categ. distr. CVLL-P CVLL-R G
2-GR G

2-GP G
2-P G

2-R
n=10 500 NC=3 N(-1,1) -4089.16 -4154.71 8726.07 8716.79 8726.53 8845.49

(6.8) (2.93) (114.93) (114.88) (113.85) (105.32)
N(0,1) -4294.73 -4377.04 9446.25 9439.07 9448.22 9604

(11.44) (9.25) (66.04) (66.86) (68.48) (63.78)
NC=5 N(-1,1) -5293.54 -5667.57 11475.18 11421.78 11430.29 12238.25

(6.55) (3.59) (165.89) (166.66) (168.42) (180.35)
N(0,1) -5890.14 -6214.61 12761.86 12717.41 12730.84 13466.79

(8.89) (5.09) (109.19) (102.75) (101.56) (85.49)
1000 NC=3 N(-1,1) -7967.14 -8123.81 17538.92 17523.4 17534.45 17772.42

(5.88) (5.13) (155.38) (152.24) (152.18) (142.51)
N(0,1) -8664.51 -8803.31 18953.95 18946.03 18956.25 19270.85

(5.43) (5.47) (106.22) (108.98) (110.08) (90.41)
NC=5 N(-1,1) -10554.52 -11350.73 23016.98 22899.36 22908.13 24523.65

(6.1) (5.04) (102.18) (99.64) (101.85) (98.38)
N(0,1) -11650.61 -12330.55 25651.33 25569.09 25578.42 26975.77

(7.07) (6.53) (135.07) (138.2) (139.06) (87.31)
n=20 500 NC=3 N(-1,1) -7995.65 -8083.48 17108.86 17083.9 17102.56 17313.44

(6.59) (4.38) (150.00) (154.38) (152.92) (137.25)
N(0,1) -8649.3 -8747.97 18699.74 18680.79 18695.82 18940.69

(7.83) (4.23) (100.44) (100.05) (96.07) (104.89)
NC=5 N(-1,1) -10737.11 -11374.96 22611.4 22493.27 22513.97 24052.77

(14.09) (3.29) (117.89) (113.49) (115.79) (141.95)
N(0,1) -12113.26 -12808.89 25215.88 25117.54 25141.54 26642.51

(15.67) (6.58) (133.88) (142.88) (139.59) (125.54)
1000 NC=3 N(-1,1) -16110.53 -16276.95 34085.35 34041.83 34064.54 34452.27

(6.35) (5.32) (261.76) (263.08) (260.82) (275.00)
N(0,1) -17373.16 -17606.67 37244.14 37210.02 37227.27 37712.15

(9.31) (9.36) (157.47) (164.04) (165.9) (181.03)
NC=5 N(-1,1) -21538.92 -22973.43 45409.01 45196.04 45215.7 48257.15

(10.85) (4.62) (443.85) (442.19) (442.75) (446.94)
N(0,1) -23788.98 -25220.09 50420.79 50218.58 50238.88 53244.24

(19.54) (7.7) (236.13) (228.28) (228.97) (211.71)
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Table 4-3. Averages of Model Selection Indices When Data Generated With RSM

Average indices of model-selection methods (SD)
test sample # of ability
length size categ. distr. DIC-GR DIC-GP DIC-P DIC-R CVLL-GR CVLL-GP
n=10 500 NC=3 N(-1,1) 8434.44 8419.28 8413.89 8404.01 -3990.68 -3982.19

(115.24) (117.71) (116.3) (115.67) (16.3) (14.82)
N(0,1) 8915.39 8905.25 8905.09 8895.96 -4217.29 -4210.13

(97.11) (96.04) (86.56) (87.63) (11.47) (11.88)
NC=5 N(-1,1) 10528.71 10446.74 10438.67 10413.58 -4981.55 -4961.71

(80.47) (78.52) (75.99) (69.9) (10.49) (11.46)
N(0,1) 11741.14 11652.05 11640.9 11611.17 -5607.94 -5584.7

(85.26) (89.29) (86.01) (85.55) (10.11) (8.65)
1000 NC=3 N(-1,1) 16800.37 16777.92 16768.85 16758.59 -8057.44 -8031.59

(161.07) (161.14) (156.16) (155.85) (30.16) (11.43)
N(0,1) 17745.77 17728.33 17723.65 17715.59 -8541.04 -8518.61

(176.82) (175.63) (168.19) (167.11) (29.32) (11.61)
NC=5 N(-1,1) 21107.86 20978.89 20967 20944.77 -10155.45 -10117.4

(161.11) (167.62) (164.47) (166.72) (13.56) (11.99)
N(0,1) 23427.45 23303.39 23294.36 23269.42 -11254.11 -11212.23

(162.54) (166.33) (161.25) (163.55) (10.00) (9.18)
n=20 500 NC=3 N(-1,1) 16542.21 16511.37 16496.67 16478.01 -7951.24 -7946.25

(143.25) (145.67) (141.90) (143.28) (14.88) (11.69)
N(0,1) 17605.12 17577.02 17555.2 17536.53 -8470.58 -8464.08

(143.12) (142.23) (137.77) (141.55) (8.25) (8.49)
NC=5 N(-1,1) 20849.53 20673.24 20658.04 20604.4 -10123.09 -10060.06

(181.57) (183.25) (174.74) (177.74) (14.06) (13.05)
N(0,1) 23182.65 23012.52 22989.44 22932.16 -11356.96 -11318.59

(163.96) (158.43) (154.32) (158.3) (14.33) (14.21)
1000 NC=3 N(-1,1) 32905.13 32856.22 32837.89 32821.44 -15997.95 -15917.28

(209.15) (218.23) (215.38) (217.55) (58.78) (14.30)
N(0,1) 34960.39 34920.87 34905.22 34884.97 -17113.14 -17079.3

(193.14) (199.67) (195.71) (194.83) (16.75) (4.92)
NC=5 N(-1,1) 41309.91 41060.98 41044.95 40996.11 -20101.45 -20017.91

(265.95) (273.12) (273.64) (269.51) (14.83) (14.73)
N(0,1) 46184.22 45923.3 45901.16 45846.55 -22866.9 -22772.79

(277.60) (281.59) (275.71) (278.48) (8.76) (8.99)

test sample # of ability

length size categ. distr. CVLL-P CVLL-R G
2-GR G

2-GP G
2-P G

2-R
n=10 500 NC=3 N(-1,1) -3974.36 -3970.17 8687.45 8681.14 8690.91 8698.65

(2.58) (2.28) (101.74) (103.63) (104.7) (104.22)
N(0,1) -4202.34 -4197.57 9213.84 9209.38 9221.51 9230.27

(6.9) (4.31) (86.57) (86.18) (81.49) (82.69)
NC=5 N(-1,1) -4954.07 -4939.76 10859.65 10816.32 10826.01 10853.42

(11.16) (5.01) (84.51) (83.34) (81.46) (75.96)
N(0,1) -5576.75 -5565.05 12179.62 12130.57 12138.99 12162.9

(7.35) (3.18) (85.38) (90.19) (88.68) (87.69)
1000 NC=3 N(-1,1) -8020.5 -8016.63 17357.94 17345.5 17354.06 17361.64

(4.32) (4.01) (144.8) (144.23) (143.98) (143.74)
N(0,1) -8516.25 -8510.96 18382.89 18373.95 18383.48 18392.89

(6.03) (5.11) (141.67) (140.46) (139.99) (139.38)
NC=5 N(-1,1) -10108.62 -10092.85 21887.19 21800.78 21810.63 21840.6

(11.32) (5.35) (148.51) (159.29) (159.36) (161.89)
N(0,1) -11209.33 -11196.48 24450.44 24364.8 24374.19 24403.1

(5.1) (6.36) (152.9) (159.24) (158.07) (160.55)
n=20 500 NC=3 N(-1,1) -7926.92 -7918.63 16949.13 16935.47 16957.45 16976.18

(8.4) (6.38) (126.91) (128.13) (126.51) (127.77)
N(0,1) -8451.41 -8442.09 18053.53 18040.18 18056.28 18075.76

(9.62) (8.08) (128.97) (128.36) (126.34) (129.80)
NC=5 N(-1,1) -10040.37 -10011.27 21354.79 21280.89 21227.66 21286.14

(9.42) (4.26) (217.93) (234.8) (172.82) (176.21)
N(0,1) -11299.62 -11273.25 23748.16 23654.78 23674.9 23730.7

(9.72) (4.23) (142.55) (138.23) (136.73) (141.26)
1000 NC=3 N(-1,1) -15904.14 -15893.87 33865.74 33837.44 33856.05 33877.33

(9.65) (6.02) (171.06) (177.1) (179.00) (181.36)
N(0,1) -17067.27 -17057.84 35995.08 35972.67 35992.31 36009.82

(2.33) (4.55) (169.34) (174.94) (173.70) (172.79)
NC=5 N(-1,1) -20004.05 -19968.96 42515.37 42341.5 42362.16 42423.9

(9.88) (6.2) (261.15) (270.85) (271.30) (268.51)
N(0,1) -22761.12 -22732.49 47602.81 47414.45 47434.62 47493.33

(6.72) (7.18) (246.05) (254.04) (252.52) (256.24)
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Table 4-4. Averages of Model Selection Indices When Data Generated With GRM

Average indices of model-selection methods (SD)
test sample # of ability
length size categ. distr. DIC-GR DIC-GP DIC-P DIC-R CVLL-GR CVLL-GP
n=10 500 NC=3 N(-1,1) 7463.59 7458.77 7678.84 8038.15 -3551.21 -3544.81

(68.25) (68.05) (56.08) (76.49) (19.58) (12.29)
N(0,1) 8041.64 8039.46 8270.76 8620.43 -3831.64 -3833.92

(42.17) (43.18) (62.95) (62.98) (8.47) (6.24)
NC=5 N(-1,1) 11741.52 11749.29 12081.77 13000.83 -5677.59 -5698.71

(123.43) (125.94) (119.85) (107.32) (10.44) (11.53)
N(0,1) 12633.88 12622.79 12993.53 13861.30 -6136.67 -6131.28

(87.85) (95.51) (105.26) (73.43) (9.90) (11.60)
1000 NC=3 N(-1,1) 15052.80 15046.56 15460.75 16205.45 -7180.39 -7108.01

(186.07) (183.79) (167.67) (165.48) (59.88) (15.84)
N(0,1) 16131.58 16138.54 16605.17 17311.57 -7633.38 -7628.11

(101.85) (100.75) (99.87) (97.88) (24.63) (12.43)
NC=5 N(-1,1) 23170.61 23206.14 23951.37 25850.25 -11130.19 -11160.53

(157.28) (156.09) (168.19) (198.68) (19.80) (19.06)
N(0,1) 25229.57 25266.00 25942.25 27726.34 -12127.45 -12183.66

(107.33) (104.79) (152.34) (161.74) (17.51) (21.21)
n=20 500 NC=3 N(-1,1) 14288.18 14281.78 14692.77 15418.60 -6863.96 -6866.29

(132.24) (138.36) (99.68) (102.39) (12.77) (8.39)
N(0,1) 15308.97 15292.83 15730.01 16540.38 -7478.51 -7484.31

(54.54) (62.53) (92.37) (76.62) (16.13) (11.36)
NC=5 N(-1,1) 22440.25 22452.92 23149.29 24961.36 -10940.21 -10991.69

(307.10) (317.25) (351.17) (350.70) (12.65) (13.49)
N(0,1) 24476.55 24477.61 25185.01 27016.32 -11899.24 -11956.49

(144.82) (129.88) (157.70) (92.16) (10.53) (13.49)
1000 NC=3 N(-1,1) 28548.35 28564.41 29363.68 30787.13 -13998.61 -13960.45

(225.02) (229.47) (203.95) (219.86) (43.50) (10.38)
N(0,1) 30670.69 30685.22 31544.71 33246.65 -14854.73 -14849.72

(115.02) (113.97) (139.15) (161.21) (19.22) (10.23)
NC=5 N(-1,1) 45134.11 45248.17 46652.08 50268.81 -22070.59 -22147.44

(164.23) (165.20) (193.05) (199.84) (10.34) (11.56)
N(0,1) 48725.88 48805.10 50275.81 54025.64 -24128.60 -24210.87

(260.55) (274.39) (298.85) (235.93) (15.35) (15.99)

test sample # of ability

length size categ. distr. CVLL-P CVLL-R G
2-GR G

2-GP G
2-P G

2-R
n=10 500 NC=3 N(-1,1) -3646.96 -3841.72 7776.65 7780.75 7940.33 8310.62

(6.19) (3.18) (61.16) (61.60) (55.59) (71.94)
N(0,1) -3947.88 -4112.08 8400.35 8404.52 8572.75 8934.82

(5.41) (3.68) (41.61) (42.15) (58.46) (57.67)
NC=5 N(-1,1) -5820.24 -6304.24 12408.89 12106.41 12460.50 13424.55

(7.02) (6.23) (511.16) (120.14) (118.35) (102.23)
N(0,1) -6309.82 -6698.06 12999.76 13079.13 13407.16 14323.92

(12.03) (7.16) (75.65) (175.49) (96.01) (63.99)
1000 NC=3 N(-1,1) -7319.89 -7692.63 16457.94 15815.14 16002.61 16752.82

(4.50) (4.00) (757.09) (316.39) (159.94) (157.72)
N(0,1) -7904.40 -8223.16 16893.86 16903.31 17231.09 17944.54

(8.74) (6.15) (77.45) (76.41) (82.51) (78.87)
NC=5 N(-1,1) -11492.11 -12408.24 24826.35 24164.35 24787.43 26724.80

(12.10) (4.65) (760.98) (332.38) (157.20) (188.19)
N(0,1) -12512.72 -13374.05 26098.78 26151.95 26851.18 28681.39

(10.06) (2.07) (110.21) (109.89) (150.05) (151.15)
n=20 500 NC=3 N(-1,1) -7038.33 -7370.65 15213.21 14868.38 15170.13 15928.34

(5.33) (6.52) (529.74) (189.30) (100.11) (98.04)
N(0,1) -7683.27 -8100.82 15853.94 15866.16 16257.14 17093.66

(10.77) (10.49) (76.68) (76.48) (102.68) (79.29)
NC=5 N(-1,1) -11309.91 -12210.79 23143.15 23021.44 23724.76 25638.76

(11.36) (4.66) (347.08) (314.69) (352.01) (351.19)
N(0,1) -12305.96 -13221.44 25017.43 25082.75 25807.30 27747.64

(13.10) (6.61) (137.05) (124.77) (154.44) (84.94)
1000 NC=3 N(-1,1) -14375.09 -15133.84 33404.57 29718.81 30398.45 31839.40

(7.77) (7.46) (7552.50) (204.38) (197.86) (209.58)
N(0,1) -15238.40 -16105.85 31905.62 31931.76 32667.98 34384.95

(6.29) (6.40) (100.40) (97.75) (125.08) (148.13)
NC=5 N(-1,1) -22839.51 -24772.09 47519.03 46679.39 47958.95 51672.31

(12.56) (4.52) (883.79) (357.09) (179.98) (185.61)
N(0,1) -24916.32 -26791.09 50082.28 50216.08 51679.22 55533.91

(10.55) (8.51) (244.88) (252.99) (293.65) (229.47)
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Table 5. Model Selection Frequencies

test samp. # of abil. true Selected by DIC Selected by PsBF Selected by AIC Selected by BIC Selected by LR
leng. size categ. distr. model GR GP P R GR GP P R GR GP P R GR GP P R GR GP P R
n=10 500 NC=3 N(-1,1) GR 2 8 0 0 4 6 0 0 9 1 0 0 9 1 0 0 - 10 0 0

GP 3 7 0 0 0 10 0 0 3 7 0 0 3 7 0 0 - 10 0 0
P 0 1 9 0 0 1 9 0 1 0 9 0 0 0 10 0 - 1 9 0
R 0 1 0 9 0 3 0 7 0 0 0 10 0 0 0 10 - 0 0 10

N(0,1) GR 3 7 0 0 9 1 0 0 9 1 0 0 9 1 0 0 - 10 0 0
GP 1 9 0 0 0 10 0 0 1 9 0 0 1 9 0 0 - 10 0 0
P 0 1 9 0 0 1 9 0 0 0 10 0 0 0 10 0 - 0 10 0
R 0 3 0 7 0 1 1 8 0 0 0 10 0 0 0 10 - 0 0 10

NC=5 N(-1,1) GR 9 1 0 0 10 0 0 0 6 4 0 0 6 4 0 0 - 10 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 - 10 0 0
P 0 0 10 0 0 1 9 0 0 0 10 0 0 0 10 0 - 0 10 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 - 0 1 9

N(0,1) GR 2 8 0 0 2 8 0 0 10 0 0 0 10 0 0 0 - 9 1 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 - 10 0 0
P 0 3 7 0 0 1 9 0 0 1 9 0 0 0 10 0 - 1 9 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 - 0 0 10

1000 NC=3 N(-1,1) GR 2 8 0 0 1 9 0 0 2 7 1 0 2 7 1 0 - 9 1 0
GP 0 10 0 0 3 7 0 0 0 10 0 0 0 10 0 0 - 10 0 0
P 0 4 6 0 0 4 6 0 0 0 10 0 0 0 10 0 - 1 9 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 - 0 0 10

N(0,1) GR 8 2 0 0 8 2 0 0 10 0 0 0 10 0 0 0 - 10 0 0
GP 0 10 0 0 6 4 0 0 0 10 0 0 0 10 0 0 - 10 0 0
P 0 2 8 0 0 2 8 0 0 0 10 0 0 0 10 0 - 1 9 0
R 0 0 0 10 0 2 1 7 0 0 0 10 0 0 0 10 - 0 0 10

NC=5 N(-1,1) GR 10 0 0 0 10 0 0 0 4 6 0 0 4 6 0 0 - 9 1 0
GP 1 9 0 0 0 10 0 0 1 9 0 0 1 9 0 0 - 9 1 0
P 0 2 8 0 0 4 6 0 0 0 10 0 0 0 10 0 - 0 10 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 - 0 0 10

N(0,1) GR 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 - 10 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 - 10 0 0
P 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 - 0 10 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 - 0 0 10

n=20 500 NC=3 N(-1,1) GR 4 6 0 0 6 4 0 0 5 4 1 0 5 4 1 0 - 9 1 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 - 10 0 0
P 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 - 0 10 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 - 0 0 10

N(0,1) GR 2 8 0 0 7 3 0 0 10 0 0 0 10 0 0 0 - 10 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 - 10 0 0
P 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 - 0 10 0
R 0 0 0 10 0 0 1 9 0 0 0 10 0 0 0 10 - 0 0 10

NC=5 N(-1,1) GR 8 2 0 0 10 0 0 0 7 3 0 0 7 3 0 0 - 10 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 - 10 0 0
P 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 - 2 8 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 - 0 0 10

N(0,1) GR 5 5 0 0 10 0 0 0 10 0 0 0 10 0 0 0 - 10 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 - 10 0 0
P 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 - 1 9 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 - 0 0 10

1000 NC=3 N(-1,1) GR 9 1 0 0 2 8 0 0 0 10 0 0 0 10 0 0 - 10 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 - 10 0 0
P 0 0 10 0 0 1 9 0 0 0 10 0 0 0 10 0 - 0 10 0
R 0 0 0 10 0 0 1 9 0 0 0 10 0 0 0 10 - 0 0 10

N(0,1) GR 9 1 0 0 4 6 0 0 10 0 0 0 10 0 0 0 - 10 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 - 10 0 0
P 0 0 10 0 0 2 8 0 0 0 10 0 0 0 10 0 - 0 10 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 - 0 0 10

NC=5 N(-1,1) GR 10 0 0 0 10 0 0 0 3 7 0 0 3 7 0 0 - 10 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 - 10 0 0
P 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 - 0 10 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 - 0 0 10

N(0,1) GR 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 - 10 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 - 10 0 0
P 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 - 1 9 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 - 0 0 10
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Appendix A: MATLAB Code Used for calculating PsBF

cvlog.m

------------------------------------------------------------------------

% Condition 2222GRM: data generated following GRM; n=20; N=1000; NC=5, theta~N(0,1)

n=20; N=1000; ncat=5; thm=0;

load estrsm.txt; % estimated item parameters by RSM

load estpcm.txt; % estimated item parameters by PCM:

load estgpcm.txt; % estimated item parameters by GPCM:

load estgrm.txt; % estimated item parameters by GRM:

% Cross-Validation Dataset

load gr2222v.txt; cvdat = gr2222v; cvloglik=zeros(10,4);

% CV log-likelihood of GRM

for z=1:10

cur_GRM=z

a=estgrm(1:n,z);

% reading b1, b2, b3, and b4

for s=1:n

b1(s)=estgrm(n+(4*s-3),z);

b2(s)=estgrm(n+(4*s-2),z);

b3(s)=estgrm(n+(4*s-1),z);

b4(s)=estgrm(n+(4*s),z);

end

cv=zeros(N,1);

for j=1:N

resp=zeros(1,n);

resp=cvdat(j,:);

ind_cv_grm

cv(j)=cvj;

end

cvloglik(z,1)=sum(cv);

end

% CV log-likelihood of GPCM

for z=1:10

cur_GPCM=z

a=estgpcm(1:n,z); b=estgpcm(n+1:2*n,z);

% reading tau2, tau3, tau4, and tau5

for s=1:n

tau2(s)=estgpcm(2*n+(4*s-3),z);

tau3(s)=estgpcm(2*n+(4*s-2),z);

tau4(s)=estgpcm(2*n+(4*s-1),z);

tau5(s)=estgpcm(2*n+(4*s),z);

end

cv=zeros(N,1);

for j=1:N

resp=zeros(1,n);

resp=cvdat(j,:);

ind_cv_gpcm

cv(j)=cvj;

end

cvloglik(z,2)=sum(cv);

end

% CV log-likelihood of PCM

for z=1:10

cur_PCM=z

a=ones(n,1); b=estpcm(1:n,z);

% reading tau2, tau3, tau4, and tau5

for s=1:n

tau2(s)=estpcm(n+(4*s-3),z);
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tau3(s)=estpcm(n+(4*s-2),z);

tau4(s)=estpcm(n+(4*s-1),z);

tau5(s)=estpcm(n+(4*s),z);

end

cv=zeros(N,1);

for j=1:N

resp=zeros(1,n);

resp=cvdat(j,:);

ind_cv_gpcm

cv(j)=cvj;

end

cvloglik(z,3)=sum(cv);

end

% CV log-likelihood of RSM

for z=1:10

cur_RSM=z

a=ones(n,1); b=estrsm(1:n,z);

tau2=estrsm(n+1,z)*ones(n,1);

tau3=estrsm(n+2,z)*ones(n,1);

tau4=estrsm(n+3,z)*ones(n,1);

tau5=estrsm(n+4,z)*ones(n,1);

cv=zeros(N,1);

for j=1:N

resp=zeros(1,n);

resp=cvdat(j,:);

ind_cv_gpcm

cv(j)=cvj;

end

cvloglik(z,4)=sum(cv);

end

% PsBF

dlmwrite(’cvloglik.txt’, cvloglik, ’ ’);

------------------------------------------------------------------------

ind_cv_gpcm.m

------------------------------------------------------------------------

% When the number of categories is 5

% 41 quadrature points between -4 to 4

k=-4:.2:4; K=length(k); prob=zeros(1,K); L=zeros(1,K);

% to calculate likelihood at each node

pofc=zeros(K,n,ncat); tt=zeros(K,n,ncat); denom=zeros(K,n); for

t=1:K

for i=1:n

tt(t,i,1) = 1;

tt(t,i,2) = exp(a(i)*(k(t)-b(i)+tau2(i)));

tt(t,i,3) = exp(a(i)*(k(t)-b(i)+tau2(i) + k(t)-b(i)+tau3(i)));

tt(t,i,4) = exp(a(i)*(k(t)-b(i)+tau2(i) + k(t)-b(i)+tau3(i)+ k(t)-b(i)+tau4(i)));

tt(t,i,5) = exp(a(i)*(k(t)-b(i)+tau2(i) + k(t)-b(i)+tau3(i)+ k(t)-b(i)+tau4(i)

+ k(t)-b(i)+tau5(i)));

denom(t,i) = 1 + tt(t,i,2) + tt(t,i,3) + tt(t,i,4) + tt(t,i,5);

end

end for t=1:K

for i=1:n

for w=1:ncat

pofc(t,i,w)=tt(t,i,w)/denom(t,i);

end

end

end for t=1:K

lik=1;

for i=1:n

if resp(i)==1
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lik=lik*pofc(t,i,1);

elseif resp(i)==2

lik=lik*pofc(t,i,2);

elseif resp(i)==3

lik=lik*pofc(t,i,3);

elseif resp(i)==4

lik=lik*pofc(t,i,4);

else

lik=lik*pofc(t,i,5);

end

end

L(t)=lik;

end

% to cmpute a posterior probability of ability

for t=1:K

prob(t)=L(t)*normpdf(k(t),thm,1);

end

prob=prob/sum(prob);

% to get CV log likelihood

cvj=0; for t=1:K

cvj=cvj+prob(t)*log(L(t));

end

------------------------------------------------------------------------

ind_cv_grm.m

------------------------------------------------------------------------

% When the number of categories is 5

% 41 quadrature points between -4 to 4

k=-4:.2:4; K=length(k); prob=zeros(1,K); L=zeros(1,K);

% to calculate likelihood at each node

pofc=zeros(K,n,ncat); tt=zeros(K,n,ncat-1); for t=1:K

for i=1:n

tt(t,i,1) = 1/(1 + exp(-a(i)*(k(t) - b1(i) )));

tt(t,i,2) = 1/(1 + exp(-a(i)*(k(t) - b2(i) )));

tt(t,i,3) = 1/(1 + exp(-a(i)*(k(t) - b3(i) )));

tt(t,i,4) = 1/(1 + exp(-a(i)*(k(t) - b4(i) )));

pofc(t,i,1) = 1 - tt(t,i,1);

pofc(t,i,2) = tt(t,i,1) - tt(t,i,2);

pofc(t,i,3) = tt(t,i,2) - tt(t,i,3);

pofc(t,i,4) = tt(t,i,3) - tt(t,i,4);

pofc(t,i,5) = tt(t,i,4);

end

end

% to make it sure that the sum of pofc’s(prob. of category) is the unity

for t=1:K

for i=1:n

totpofc(t,i)=pofc(t,i,1)+pofc(t,i,2)+pofc(t,i,3)+pofc(t,i,4)+pofc(t,i,5);

pofc(t,i,1) = pofc(t,i,1) / totpofc(t,i);

pofc(t,i,2) = pofc(t,i,2) / totpofc(t,i);

pofc(t,i,3) = pofc(t,i,3) / totpofc(t,i);

pofc(t,i,4) = pofc(t,i,4) / totpofc(t,i);

pofc(t,i,5) = pofc(t,i,5) / totpofc(t,i);

end

end

for t=1:K

lik=1;

for i=1:n

if resp(i)==1
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lik=lik*pofc(t,i,1);

elseif resp(i)==2

lik=lik*pofc(t,i,2);

elseif resp(i)==3

lik=lik*pofc(t,i,3);

elseif resp(i)==4

lik=lik*pofc(t,i,4);

else

lik=lik*pofc(t,i,5);

end

end

L(t)=lik;

end

% to cmpute a posterior probability of ability

for t=1:K

prob(t)=L(t)*normpdf(k(t),thm,1);

end

prob=prob/sum(prob);

% to get CV log likelihood

cvj=0; for t=1:K

cvj=cvj+prob(t)*log(L(t));

end

------------------------------------------------------------------------



IRT Model Selection Methods 40

True model: GRM

Selected model (n=10)

P
ro

po
rti

on
 o

f t
he

 s
el

ec
te

d 
as

 th
e 

be
st

GRM GPCM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Selected model (n=10)

P
ro

po
rti

on
 o

f t
he

 s
el

ec
te

d 
as

 th
e 

be
st

GRM GPCM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Selected model (n=10)

P
ro

po
rti

on
 o

f t
he

 s
el

ec
te

d 
as

 th
e 

be
st

GRM GPCM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True model: GPCM

Selected model (n=10)

GRM GPCM
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Selected model (n=10)

GRM GPCM
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Selected model (n=10)

GRM GPCM
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Selected model (n=20)

P
ro

po
rti

on
 o

f t
he

 s
el

ec
te

d 
as

 th
e 

be
st

GRM GPCM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Selected model (n=20)

P
ro

po
rti

on
 o

f t
he

 s
el

ec
te

d 
as

 th
e 

be
st

GRM GPCM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Selected model (n=20)

P
ro

po
rti

on
 o

f t
he

 s
el

ec
te

d 
as

 th
e 

be
st

GRM GPCM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Selected model (n=20)

GRM GPCM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Selected model (n=20)

GRM GPCM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Selected model (n=20)

GRM GPCM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

Figure 1: Model Selection Proportions by Test Length (DIC, PsBF and BIC)
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Figure 2: Model Selection Proportions by Sample Size (DIC, PsBF and BIC)
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Figure 3: Model Selection Proportions by Number of Categories (DIC, PsBF and BIC)
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Figure 4: Model Selection Proportions by Ability Distribution (DIC, PsBF and BIC)


